8 research outputs found

    Hypermaps - Beyond occupancy grids

    Get PDF
    Intelligent and autonomous robotic applications often require robots to have more information about their environment than provided by traditional occupancy maps. An example are semantic maps, which provide qualitative descriptions of the environment. While research in the area of semantic mapping has been performed, most robotic frameworks still offer only occupancy maps. In this thesis, a framework is developed to handle multi-layered 2D maps in ROS. The framework offers occupancy and semantic layers, but can be extended with new layer types in the future. Furthermore, an algorithm to automatically generate semantic maps from RGB-D images is presented. Software tests were performed to check if the framework fulfills all set requirements. It was shown that the requirements are accomplished. Furthermore, the semantic mapping algorithm was evaluated with different configurations in two test environments, a laboratory and a floor. While the object shapes of the generated semantic maps were not always accurate and some false detections occurred, most objects were successfully detected and placed on the semantic map. Possible ways to improve the accuracy of the mapping in the future are discussed

    Viewpoint Planning based on Shape Completion for Fruit Mapping and Reconstruction

    Full text link
    Robotic systems in agriculture do not only enable increasing automation of farming activities but also represent new challenges for robotics due to the unstructured environment and the non-rigid structures of crops. Especially, active perception for fruit mapping and harvesting is a difficult task since occlusions frequently occur and image segmentation provides only limited accuracy on the actual shape of the fruits. In this paper, we present a viewpoint planning approach that explictly uses the shape prediction from collected data to guide the sensor to view as yet unobserved parts of the fruits. We developed a novel pipeline for continuous interaction between prediction and observation to maximize the information gain about sweet pepper fruits. We adapted two different shape prediction approaches, namely parametric superellipsoid fitting and model based non-rigid latent space registration, and integrated them into our Region of Interest (RoI) viewpoint planner. Additionally, we used a new concept of viewpoint dissimilarity to aid the planner to select good viewpoints and for shortening the planning times. Our simulation experiments with a UR5e arm equipped with a Realsense L515 sensor provide a quantitative demonstration of the efficacy of our iterative shape completion based viewpoint planning. In comparative experiments with a state-of-the-art viewpoint planner, we demonstrate improvement not only in the estimation of the fruit sizes, but also in their reconstruction. Finally, we show the viability of our approach for mapping sweet peppers with a real robotic system in a commercial glasshouse.Comment: Agricultural Automation, Viewpoint Planning, Active Perceptio

    Graph-based View Motion Planning for Fruit Detection

    Full text link
    Crop monitoring is crucial for maximizing agricultural productivity and efficiency. However, monitoring large and complex structures such as sweet pepper plants presents significant challenges, especially due to frequent occlusions of the fruits. Traditional next-best view planning can lead to unstructured and inefficient coverage of the crops. To address this, we propose a novel view motion planner that builds a graph network of viable view poses and trajectories between nearby poses, thereby considering robot motion constraints. The planner searches the graphs for view sequences with the highest accumulated information gain, allowing for efficient pepper plant monitoring while minimizing occlusions. The generated view poses aim at both sufficiently covering already detected and discovering new fruits. The graph and the corresponding best view pose sequence are computed with a limited horizon and are adaptively updated in fixed time intervals as the system gathers new information. We demonstrate the effectiveness of our approach through simulated and real-world experiments using a robotic arm equipped with an RGB-D camera and mounted on a trolley. As the experimental results show, our planner produces view pose sequences to systematically cover the crops and leads to increased fruit coverage when given a limited time in comparison to a state-of-the-art single next-best view planner.Comment: 7 pages, 10 figures, accepted at IROS 202

    Hypermap Mapping Framework and its Application to Autonomous Semantic Exploration

    No full text
    Modern intelligent and autonomous robotic applications often require robots to have more information about their environment than that provided by traditional occupancy grid maps. For example, a robot tasked to perform autonomous semantic exploration has to label objects in the environment it is traversing while autonomously navigating. To solve this task the robot needs to at least maintain an occupancy map of the environment for navigation, an exploration map keeping track of which areas have already been visited, and a semantic map where locations and labels of objects in the environment are recorded. As the number of maps required grows, an application has to know and handle different map representations, which can be a burden.We present the Hypermap framework, which can manage multiple maps of different types. In this work, we explore the capabilities of the framework to handle occupancy grid layers and semantic polygonal layers, but the framework can be extended with new layer types in the future. Additionally, we present an algorithm to automatically generate semantic layers from RGB-D images. We demonstrate the utility of the framework using the example of autonomous exploration for semantic mapping.Peer reviewe

    Combining local and global viewpoint planning for fruit coverage

    No full text
    Obtaining 3D sensor data of complete plants or plant parts (e.g., the crop or fruit) is difficult due to their complex structure and a high degree of occlusion. However, especially for the estimation of the position and size of fruits, it is necessary to avoid occlusions as much as possible and acquire sensor information of the relevant parts. Global viewpoint planners exist that suggest a series of viewpoints to cover the regions of interest up to a certain degree, but they usually prioritize global coverage and do not emphasize the avoidance of local occlusions. On the other hand, there are approaches that aim at avoiding local occlusions, but they cannot be used in larger environments since they only reach a local maximum of coverage. In this paper, we therefore propose to combine a local, gradient-based method with global viewpoint planning to enable local occlusion avoidance while still being able to cover large areas. Our simulated experiments with a robotic arm equipped with a camera array as well as an RGB-D camera show that this combination leads to a significantly increased coverage of the regions of interest compared to just applying global coverage planning.</p
    corecore